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Adaptive Tests

by

K. S. Mak 1

Purdue University

Abstract

The problem of hypothesis testing when the distribution is specified only up

to a nuisance parameter is considered. A test is said to be adaptive if it is

asymptotically optimal regardless of the value of the nuisance parameter. The

exponential rate of convergence to zero of the probability of type II error when

the probability of type I error converges to zero exponentially fast at a fixed

rate is used as the optimal criterion. A necessary and sufficient condition for the

existence of adaptive test is obtained. ,.,- ., ,,/' v "Y-"-
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1 Introduction

Let x = (Xz,... , X) be n independent, identically, distributed observations on a

random variable X having distribution P or Q. It is desired to test the null hy- r

pothesis that X has distribution P versus the alternative that X has distribution

Q.
Let 0, = On.(x) be any test function. Let A be a non-negative number. As

in Tusn.dy (1977), a sequence of test functions (On} is said to have exponential

rate A if
limsupn._ Ep On < 1, when A = (1.1)

limsup. n 1 logEp¢ < -A, when A > 0.

Let 4 A(P) be the set of all sequences of tests that have exponential rate A. Let

B(A,P,Q) = -infliminf n- log EQ(1 -€On): {On} E IDA(P)}. (1.2)

In other words, B(A, P, Q) is the optimal exponential rate at which the proba-

bility of type II error can converge to zero. A sequence of tests {On} in 4(A(P) is

said to be asymptotically optimal if

liminf n - ' log EQ(1 - On) = -B(A, P, Q).

Let the densities of P, Q be denoted by p(x), q() respectively. It is assumed

that Ep(q(x)/p(x))' < oo for all t. It is known that (see Bahadur (1971)) if

limn-. Epn = a, 0 < a < 1 (so that the sequence of tests {€n} is of exponential

rate 0), then B(0,P,Q) = K(P,Q) where K(P,Q) = Eplog(p(x)/q(x)) is the

Kullback-Leibler information number. 0.0

When A > 0, it is shown in Blahut (1974), Tusn.dy (1977), and Birg6 (1981)

that
-B(A,P,Q) =inf tC+logEQ "  ""x) t (1.3)

t>O \q(x)(13

where C is determined by

-A = inf -tC + log Ep ( (1.4)

Futhermore, if 0 < A < K(Q, P), then B = B(A, P, Q) > 0 and

A =B + C. (1.5)
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A similar notion of asymptotic optimality for composite hypotheses has been

investigated in Bahadur (1960), Hoeffding (1965), Brown (1971), Tusn6dy (1977)

and Birg6 (1981).

Now assume that the distributions P and Q are not determined exactly,

but only up to a finite-valued nuisance parameter 7-,,r - 1,...,l. For example,

a message, in one of I posssible languages using the same alphabets, is to be

transmitted through a noisy channel n times and a choice has to be made between

two possible messages or rather the probability distributions associated with the

messages, without knowing which language is used. Another example is that

there are I measurement types and for each type a, the measurement has two
possible distributions P,, and Qa, . Thus, one has to test P', versus Q,, with a

unknown.

Let A 1,..., Al be fixed positive numbers. A test 0' is called an adaptive test

if it is an asymptotically optimal test of rate A,, for each value of the nuisance

parameter a. That is, 0* is adaptive if for each a,

limsupn_. n' log E S -A ,, and

liminfn-n - logE4(1-0) = -B(A , ,P , ,Q , ).(.

The existence of adaptive tests of rate 0 has been investigated in Rukhin

(1982,1986). A necessary and sufficient condition for the existence of such a test is

that K(Pa, , Qe) ! K(Pq, Qp) for all a, P. It is shown in section 2 that for adaptive

tests to exist, any two distributions P , , Q6, a $ PJ cannot be more 'difficult' to

distinguish than Pa, Q ,. Here, 'difficulty' in distinguishing two distributions is

measured by the rate of convergence of the type II error. When an adaptive test

exists, it is shown that a weighted likelihood ratio test with weights depending

on the rates of convergence of the type I and II errors is always adaptive. An

overall maximum likelihood ratio test may not be adaptive.

2 Condition for the Existence of Adaptive Tests
.'-

Let pa(x),qa, (x) be the densities of P , Q ,, respectively. Let A,... ,Aj be posi-

tive constants and denote B(Aa, Pa, Qp), C(Aa, Pa, Qp) by B ,,, C ,,g respectively. S

Also, let tP(tjP ,,,,#) = Eg(qp(x)/p , (x))'. Assume that t(tjPa,,Q6) < co for

all t, for all a,#/. Note that tP(tIP, Q#) is the moment generating function of

log(q (x)/p.a(x)), thus by the finiteness assumption, 0 (tIP , , Q6) is strictly convex

SN
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and differentiable, indeed differentiation can be carried out under the expectation

sign. Let

n= T(x) = n- 1 logmax, e - 1 q. (xj) (2.1)max e" j=L rO;

Let On = On(x) be a test with critical region given by Tn > 0, i.e.

On 1 if Tn >! 0 (2.2)

0 otherwise.

Theorem 2.1 Assume that 0 < A, < minp K(Qg, P,), for all a. If B6a > Ba

for all 3, a, then O, is an adaptive test.

Proof. We first show that On has exponential rate A, for every a. Since,

Et,, < P. n- log ma .enl0 p(x ) >_0

< P. n-log )0=1 e'A -j=1 Pa(Xi) -:

< Il-max P. n- -log q0 (x- - ) > A,, - B oenaol.p(xj)

and

I n- x  log q# (xi) < n(.Bp f;(qoX) )I

j=1 Pa (i) Pa Wa-BO< - t A * B t  x

for any t > 0, it follows that,

E p¢, < On . max inf e-nt(A.-B##)(p(tjp., Q6))n.
t>o

Therefore,

limsupn - logEq,¢n < maxinf{-t(Aa - Bp) + logk(tiPa,Q )}
n-*oo ' t>O

< maxinf{-t(Aa - B,,) + log (tIPr, Q#)}
- t>o

-Ac,

as A,, - B,,= C,,# by (1.5).
% %

U-
w SW€W 2 %' V SW" 5 y C.%,
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Since On is a test of exponential rate Aa for each a, to show that € is an

adaptive test, it is enough to show that liminf,,.o n-' log E' (1 - On) B Baa.

Now,

E12(1-eOn) l -max Q. - lo Ba~,,)

and so, by a similar argument, one obtains

liminfn- 1 logES(1 - ,,) < maxinf{-t(Ba, - Ap) + log4'(t Qa,Pp)}. (2.3)
n-o t>o

Since the function log0(tIQ,Pp) is strictly convex, there exist 0 < to < 1 such

that -Bpa = toCpa + log¢(toIQa,Pp). Therefore,

inft>o{-t(Baa - A#) + logwP(tIQ.,P )}
< -to(Ba, - A,) + log tp(to Qa,P,)

= -B, + (1 - to)Bcg + toA# - B,6. - to(Ap - B0.)

- Baa + (1 - to)(Baa - Bpa)

< -Ba.

Thus, from (2.3), liminf_,,. n-' log E(1 - On) < -B.., for all a and 0, is an

adaptive test.

A necessary condition for the existence of adaptive tests is obtained by consid-

ering the asymptotic behaviour of the most powerful test of the simple hypothesis

=1 pa(xj) versus the simple alternative wa ]I qa(X3 ) + 1 f-7= qp(xj), a O /,

where Wk = enk/(ene + en o), k = a,fl, and ba, b6 are real numbers.

For the remainder of this section, we assume that Pa, Q, are absolutely con-

tinuous with respect to the Lebesgue measure for all a. Let Q, denote the dis- ,.

tribution with density wa 11n=1 qa (x) + w# fl = qp(x,). Let 0' be the following

likelihood ratio test :

= # if (,)-qp(x)
H>, Pa(Xj)>_C

0 otherwise,

where Cn is a constant.

Lemma 2.1 For a fixed a, if l n- log E;0 = -Aa, then

lim n-' log E(1 -4) max (bk + pak(b., bo, C)) -b,

.(

" " ' p~~e'' ~ v-- ,
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where pk(b,,, bp, C) inf,,t>o{s(C - b,) + t(C - b,) + log EQ - (z))} and

C = maxk= ,#(Ck + bk),b = max(b,, bp).

Proof. We first show that the assumption implies that lim,,- c, C - b. From

the definition of ¢", one obtains

lim n-I log E'OqS

<maxliminfn-1 logPa qk (,) > +n
-k -j)L

< max inf{-t(O - bk + 6) + lg)(t-Pa, Qk "}

where w = en' + "O = limsup,.. C,. Therefore, inft>o{-t(c - bk + 6) +

log(tjP.,Qk)} _ inft>o{-tC ,, + log(t[Pa,Qk)} for k = a or fl. This implies

that C - b + 6< Cak, for k = a or P, i.e.

< =aX,(Cak + bk) -b. (2.4)

Also, E g > Pa(n - logw Iy1 l(q(z)/p,(xf)) _ cn) for k = a and 03. Thus

( n' qk (xj) >C oE nq$ > maxP. n -  logq- >c,-b +nlogw .
-~~ j=1 Pa (xj) -I'

Using a similar argument as above, one obtains, for k = a and 3,

inf f{-tC,,,k + log ¢(tP,,,Qk)} > inf{-t(C - bk + 6) + log O(tIP,, Qk)},
t>o t>O

where C = liminfn_., Cn. Hence, C < - bk + 6 for each k, i.e
'.,
.5-

C > max (Ca. + bk) - b. (2.5)
-- k=a,f |

Equations (2.4) and (2.5) imply that lina-c,,, = C - 6. Now,

E"(1- 0) O n-1log maxw k <C,

QA: n-' Elog q <xi r -

=Qk(-) 
< (- .+ =

(2.6) ',

I.
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Similarly,
k I_€)_ .(_ log ,k (xj)n- w

Q Qt n-) < C Q- b +n log w, k =a,3 . (2.7)

Applying Theorem 5.1 of Groeneboom et al. (1979), (2.6) and (2.7) imply that
lir n-' log E(1 - Oa) = p,. (b., b6, C)

for k a,,. Since E4.(1 - 0') = w,E'(1 - 0') + w EQ(1 - 0'), we have

lim n-1 logE,(1-€4) max lim n-1 log wlE(1 -€4)n-00oo ~

and the result follows. El J

Since .0 is the most powerful test of I=p,,, (x,) versus w, 17- q0 (X3 ) +

w fj= q (xj), this yields the following

Corollary 2.1 For any test 0 , such that limsupo n-1 log E;O, < -A,,, for

a fixed a

max(b, + lim inf n-' log E'(1 - 4:)) max (bk + pk(b., bp, C))
k=a,8 n-oo Q k=a,

for any 13=1,...,i and any bj,...,bj.

Corollary 2.2 pc,(b., b, C) _ -B(A., F., Qk), k = a,,3.

Proof. As shown in the proof of lemma 2.1, limn.,. n - ' log Eg = A,, implies

that lirn-. n- 'logES(1 - 0") = pc (b.,b,6,C) for k = a, L. Since, as a test of

P. versus Qt, k has exponential rate A,, the result follows from (1.2). El

Theorem 2.2 If an adaptive test exists, then for all a,#

Bac, < Bo.

Proof. Let 0* be an adaptive test. Since 0' satisfies the condition in corollary

2.1, by letting b,, = B,,, and bp = Bp, one obtains

0 = max(Bt - Bkk) > max(Bkk + pak(B,,c,,B6,C)),k=t,# - = ,

i.e. p,k(B,,,BpC) -B~k for k = a,,3. But, from corollary 2.2, with k

!,pc, (Bc,,B ,C) -B,,o, so that B# S B,#. Since a,, 3 are arbitrary, the

result follows. E

Hence from Theorems 2.1 and 2.2 we have established

.-1.
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Corollary 2.3 If P, Q, are absolutely ccntinuous with respect to the Lebesgue

measure for all a, then an adaptive test exists iff for all a,/3,

Ba < B,6. (2.8) 0

From the proof of theorem 2, we see that if an adaptive test exists, then % o ,

paf(Ba,,,B 9,C) <_ -Bo for all a,/#. Suppose that P. = Q0 for some a

3. Assume that Ap satisfies the condition in theorem 2.1, in particular A0 <

K(Qp, PO), i.e. Boo > 0. Consider

p.(B. Bp, C)

= s(C - Ba) + t(C_ B, + 0)log (p:P. W pa(X)

nf s(C - Baa)+ logE (P(X) \8 + inf{t(C - Bp)}. (2.9)

The second term of (2.9) is zero because C - B, = maxk=,O(C k + Bkk) BO,3 >

C, > 0 when Pa = Q6. Let f(s) be the function in the paranthesis of the

first term in (2.9). Then f'(0) = C- Back + E0 logp,(x)/q.(x) = C - B., +

K(P,Q.) > Ca. + K(P,,Q,) 0. Since f(s) is a convex function, this implies K
that inf,>o f(s) = 0. That is pa(B,,,B9, C) = 0. But, by assumption B33 > 0,

and inequality pa,8(Baa,Be, C) -B,6,6 is impossible, and hence adaptive test

cannot exist. This yields

Corollary 2.4 If PG = Q9 for some a $3, then an adaptive test does not exist.

Remarks. 1. If P = P for some P for all a, then (2.8) always holds, i.e. an

adaptive test always exists.

2. By interchanging the roles of Pa, Qa, we can define a similar notion of 'I.

adaptation, i.e. a test is adaptive if the type II error converges to zero at a .. ,\.

guranteed rate while the type I error converges to zero at the optimal rate. Thus 0

a test with the following properties:

limsupn - ' log EZ(1 -,) < -A and
Vt-

lim inf n - log Sp, = -B(A., Qa, Pa)

exists iff *'

B(A.,Q., P.) < B(A#,Qp,P.), for a,/3 = 1, 1. (2.10)
, __ . ., . , ',,..0

* , ..W

P,. ,.A+
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It is easy to see that liMA_.o+ B(Aa,, Qp, P,,) = K(Q6, Pa). Thus, by setting A,

... = At = 0, i.e. by letting the type II error converges to a positive constant,

condition (2.10) becomes K(Qa,P,,) < K(Q,6,P,,). This result is obtained in

Rukhin (1986).

3. Corollary 2.3 can be extended to the case when the nuisance parameter

has countably many values. Assume that info K(Qp, P,) > 0 and 0 < A, <

infp K(Qp, P.) for every a. Let {k,,} be a non-decreasing sequence such that

n - ' log k,, --* 0 as n -- oo. Consider the following test:

1 if n- I log enA_ rln ,q (zj) > 0
= ~~~~maxf<&_ nA~11l (
0 otherwise.

Using corollaries 2.1 and 2.2, it is clear that if an adaptive test exists, then (2.8)

holds for all a,fl. We claim that On* is an adaptive test if (2.8) holds. We first

show that On is a test of rate A,, for every a. Pick n large enough so that a < k,

then
E 'O ° ,, < k,,,. m ax inf e -"nCA - Bap) (I(tIp .,, Q '6)) .

P0<k- t>O

From the proof of theorem 2.1. inft>o{e-t(A.-B9),,(tIPo, QO)} < e-A-, for any 4.

Thus,

limsupn-' logEq,', < lim n- 1 logk, -A
n-ocoo

A,,

Now, we show that type II error of the test On converges to zero at the optimal

rate. Using the same argument as above

lim inf n' log EZ (1 - 0.,)

< sup inf{-t(Ba - AO) + logk(tIQ, Pp)} + lir n- log k,
t>o n-oo

Hence, On* is an adaptive test.

4. When an adaptive test exists, then the test defined in (2.2) is always adap-

tive. However, an overall maximum likelihood ratio test, i.e. a test with critical

region {x : max, -7= qa(xj)/ max. pl. P,(xj) _ e'-"}, for some constant cn, is

not necessarily adaptive even when an adaptive test exists. Let , denote such a

Z

..........



test. If c,- maxk~A, C,, then it can be shown that On is a test of rate A, for

each a. If A,a = 1,... , are picked such that C11 .. C1, then a sufficient

condition for the test ,, to be adaptive is that B, > B +t,(C-Cco) where C

max,, C.0, ta = maxo to,, and to is the point where -tC, o + log t(t 1P", QO)

attains its minimum.

3 Example

Let P0 , Q, belong to an exponential family with densities p', q, given by

p(x)= exp{Cz - }

q =(x) exp{x' -x

Let g(t, u) = -tu + log 0(tlPa, Qp). By a straightforward calculation,

(tlP, Qf) = fexpt{;x - C'x- x(r/p) + x(E)}exp{fx - x(c.)}dz

= exp{-(1 - t)X(Ca) - tX(72o) + X(tm2s + (1 - t)")).

Thus, g(t,u) = -tu - (1 - tlx(C) - tx(rlo) + x(triz + (1 - t) ). Therefore we 

have

g't) -u + X(Ca) - X(t1s) + X'(t±7p + (1 - t)

where g', X are derivitives of g, X with respect to t.

If sc satisfies
,

s.#X'(Sa6r?? + (1 - ,) - X(s.orjo + (1 - s,)C) + X(C) A , (3.1)

and let

C- (A.)=X(7p)-X(a) - X'(sa +(1-,sp)(), (3.2)

then g(sko,Ca) = -A. and g'(s,,C,,) = 0.

Suppose 0 < A, < mine K(Q6, P0 ), for each a, then an adaptive test exists

iff
A. - x(yio) + x(C) + x'(saor? + (1 -s))

_ Ao - X(77#) + x(C) + X'(spip + (1 - so) Z)

or,

x( .) - x( ,) +x' (S.,6i7+ (1- s.) a) -x' (s~gt + (1- sp)C) A - A.. (3.3) ''

' ,

- vv % .~V~.V%%* v-~ ~~ ~ ~ .~~ ~ ~ -
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Suppose P,, - N(O9.,1),Q, - N( 14,, 1), then K(Qp,P,,) = 2-'(Ao - 0,) and
1

x(tt7 + (1 - t)) = 1(tAP + (1 -t) ,
2

x, (t,70 + (1 - t)) = (tAi6 + (1 - t)00)(tto - 0.).

It is easy to check that sa = - satisfies (3.1), and it follows from (3.2)

that

C.A (A.) - 0.)2 ( 2 VTX; 1
2 (1140-0 1j .

Thus, if 0 < A, < min#2 1 ( t - e') 2 , then an adaptive test exists iff for all

(Aa - 0a)2 ( - 1)2 - Ap - A-. (3.4)

For example, when 01 = -1,411 = 1;02 = -1.5,/A2 = 0.5,A 1 = 0.5,A 2 =

1.125, then C11 = 0, C 1 2 = 0.375, C 21 = 0.625, C 22 = 1 and the above condition

is satisfied. (Here Bll = B 2 1 = 0.5, B 22 = B 12 = 0.125).

Consider the following overall maximum likelihood ratio test with the above

parametric values:

(X) = I _jj' > c

0 otherwise.
P.

If the critical constant C is chosen such that C = r'-ax C., (Ak) = 1, then Pn is

a test of exponential rate A, for a = 1, 2. Now, consider the rate of convergence

of the probability of type two error:

lim n- log E* (1 - ) =max inf (s + t) + log E' ( Pkkq- " ',

(3.5)
When a = 2,

S.E kx 2__ exp -- { S (1 _ S) (0k _ 11)2 + t (1 _ t) (Ok -112 )2Qq, (x) J q2 (X) 2
2t (Ok - u11 ) (.LI - /12) - 2st (Ok - A12) (Ok - A1

Consider k = 1 and let the expression in the parenthesis of (3.5) be g(s, t), i.e.

g(s,t) = s + t - 8t(1 - t) - 2s(1 - s) + s + 3st. *1
8t

..... -,_,-:-:,- _,,_._,..,. .,: .-.-.,.. ....,.-. .,. .. ..... ... .,.. ,, ..-,. ., .,,, ,, -, ,.,- ,,,.. ,.'. ',,'I .,



By differentiating g with respect to s and t, one can show that (a/as)g and

(a/at)g do not vanish simultaneously and therefore

inf g(s,t) = min{inf g(s,0),inf g(O,t)}.
8,t>O 8>0 t>O

By a straightforward calculation, inf.,t>0 g(s, t) z -. 0035. Hence,

im n log EQ(1 - On) > -. 125 = -B 2 ,

and it follows that On is not an adaptive test.

Note that in this example, the critical constant C = 1 is the 'best' in the

sense that $n is a test of exponential rate A, fo reach a. If C is replaced by

c,, in the definition of $, such that liminfn--. C = C' < 1, then by a similar

calculation as above, one can show that limsup_. n - 1 log E¢,$ > -A 2 .
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